Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation.
نویسندگان
چکیده
The 3-thia fatty acids, tetradecylthioacetic acid and 3,10-dithiadicarboxylic acid are mitochondrion and peroxisome proliferators. Administration of these promotes an increased transport of endogenous fatty acids to these organelles and a higher capacity of beta-oxidation. Administration of 3-thia fatty acids to rats resulted in a significant decrease of the hepatic level of docosahexaenoic acid (DHA) (17-24%) and especially eicosapentaenoic acid (EPA) (40-80%) accompanied by increased gene expression of mitochondrial 2,4-dienoyl-CoA reductase and enoyl-CoA isomerase. The mitochondrial oxidation of EPA was increased more than 4-fold after administration of 3-thia fatty acids. EPA-CoA was a good substrate for mitochondrial carnitine acyltransferase-I and treatment with 3-thia fatty acids increased the activity 1.7-fold. DHA was a poor substrate for both mitochondrial and peroxisomal beta-oxidation. DHA-CoA was a very poor substrate for mitochondrial carnitine acyltransferase-I and -II, and the activity did not increase after treatment. However, the peroxisomal DHA-CoA oxidase increased 10-fold after 3-thia fatty acid treatment, whereas the peroxisomal EPA-CoA oxidase increased only 5-fold. In isolated hepatocytes, 16% of total metabolized EPA was oxidized and 76% was incorporated into glycerolipids, whereas DHA was oxidized very little. We conclude that under conditions of increased mitochondrial and peroxisomal proliferation by 3-thia fatty acids, a relatively higher oxidation rate of polyunsaturated n-3 fatty acids might result in a decreased hepatic level of EPA and DHA. Under these conditions DHA seems to be oxidized by the peroxisomes, whereas EPA, which can be oxidized in both organelles, is mainly oxidized by mitochondria.
منابع مشابه
Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism.
Fish oil polyunsaturated fatty acids and fibrate hypolipidemic drugs are potent hypotriglyceridemic agents that act by increasing fatty acid catabolism and decreasing triglyceride synthesis and secretion by the liver. A major unresolved issue is whether this hypotriglyceridemic effect can occur independent of induction of peroxisomal beta-oxidation, a predisposing factor for hepatocarcinogenesi...
متن کاملEssential fatty acids: biochemistry, physiology and pathology.
Essential fatty acids (EFAs), linoleic acid (LA), and alpha-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapenta...
متن کاملFormulation, Characterization and Optimization of Liposomes Containing Eicosapentaenoic and Docosahexaenoic acids; A Methodology Approach
Omega-3 fatty acids (FAs) have been shown to prevent cardiovascular disease. The most commonly used omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly vulnerable to oxidation and therefore, have short shelf life. Recent advances in nanoliposomes provided a biocompatible system for stabilizing omega-3 FAs. Several methods could be implemented to prepar...
متن کاملIn contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation.
Hypolipidaemic fatty acid derivatives and polyunsaturated fatty acids decrease concentrations of plasma triacylglycerol by mechanisms that are not fully understood. Because poor susceptibility to beta- and/or omega-oxidation is apparently a determinant of the peroxisome proliferating and hypolipidaemic capacity of fatty acids and derivatives, the relative importance of activation of the peroxis...
متن کاملLong-term supplementation of docosahexaenoic acid-rich, eicosapentaenoic acid-free microalgal oil in n-3 fatty acid-deficient rat pups.
Rat pups deficient in n-3 fatty acids received an oral administration of docosahexaenoic acid (DHA)-rich, eicosapentaenoic acid (EPA)-free microalgal oil (DMO) or fish oil (FO). DMO administration almost restored liver EPA to the level of the control diet-fed dam's pups, but FO administration did not. This suggests that EPA could be recovered in the liver, even though EPA-free DMO was supplemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 39 3 شماره
صفحات -
تاریخ انتشار 1998